McLaren W1 - The Real Supercar
“To build the most authentic next-generation supercar requires an all-new powertrain and at the heart of this is our new V8 twin-turbo internal combustion engine. We’ve designed it to be much more power-dense than our previous V8 – generating 233PS per litre and capable of revving higher – at 9200rpm in W1 – with greater outputs as well as supreme driver engagement. Coupled with a motorsport-derived E-module and battery and driven through an all-new gearbox and E-differential, it is our most extreme – and exciting – powertrain yet.” - Richard Jackson, Chief Engineer, Powertrain, McLaren Automotive - 30 years of Powertrain expertise, 10 of these at McLaren, including the M630 V6
The W1 features the McLaren High-performance powertrain with an all-new V8 engine, E-module unit and transmission designed for epic performance. McLaren’s relentless approach to light weight engineering has produced a system that is power-dense, contributing to W1’s astonishing output and power-to-weight ratio.
The combined output of the HPH powertrain is 1275PS and 1340Nm, with instant throttle response from the torque of the E-module. This translates to 0–200km/h (186mph) in 5.8 seconds and 0-300km/h in under 12.7 seconds. W1 is also capable of zero-emissions driving on electric power alone.
The attention to aerodynamic requirements in W1 extends to the powertrain, which is inclined by 3 degrees to accommodate the rear diffuser. A key focus of the powertrain development programme has been optimising cooling requirements with the aerodynamic concept of the vehicle to deliver sustained, high-performance in track conditions. The car runs three separate water glycol circuits running at different temperatures: a high temperature circuit cools the engine with four radiators, two at the front and two in the middle of the car. A low temperature circuit is used for charge cooling for maximum performance with the front centrally-mounted radiator. A dedicated hybrid cooling circuit is used to cool the E-module, high voltage battery, charger and DC/DC converter. The transmission is cooled by a thermostatically-controlled oil-to-air radiator for maximum cooling on track. Including HVAC, engine oil cooling and battery dielectric cooling a total of 10 heat exchangers are used in the cooling system.
W1’s Powertrain modes have been set up to optimise driving in all environments. In addition to an Electric mode for near-silent EV running, Comfort mode – default on startup - provides relaxed cruising for town and motorway driving using the E-module for torque infill only. In Sport mode, the E-module is fully deployed for full hybrid power with ignition cut gear shifts and a more engaging throttle response. Race mode offers a Sprint setting for maximum power from the E-module and combustion engine, while Grand Prix focuses on consistent performance over a whole track session, balancing E-module deployment and harvesting.
The fact that the new McLaren W1 is rear-wheel drive-only when such astonishing levels of power and torque are available is tribute to McLaren’s incredible heritage in racing, where successfully developing vehicle platforms able to deploy large amounts of torque to the rear axle is essential. At a time when competitors are turning to front-wheel-drive assistance, McLaren’s Formula 1 knowledge and expertise – in combination with meticulous engineering attention to lightweighting, weight distribution and finely tuned vehicle dimensions and kinematics – provided the competitive advantage to deliver the rear-wheel drive solution that is true to supercar principles and only McLaren could deliver.
All-new, next generation V8 engine
The W1 debuts the all-new 4.0-litre twin-turbo flat plane crank V8 engine that will, alongside the M630 V6, power the next generation of McLaren hybrid supercars. Like the V6, it has been designed to be extremely power-dense and is capable of much higher outputs than the previous generation M840T.
The McLaren designed MPH-8 90-degree V8 has a lightweight aluminium engine block, cylinder heads and pistons. It features direct injection with fuel port injection and spray plasma coated bores, which at 92mm, allow higher engine speeds, with a stroke of 75mm for a total capacity of 3,988cc.
In extending the engine speed range, valve actuation uses sliding finger followers with a Diamond-Like-Carbon (DLC) coating. To reduce the loads in the system the new engine also uses hollow intake valves enabling the use of a lighter, single valve spring per valve arrangement in addition to sodium cooled hollow exhaust valves.
Due to the higher speeds and loads of the all-new engine, a novel approach has been taken for the crankshaft torsional damper. Unlike conventional road car engines that use external dampers, the new V8 has an internal viscous damper where the viscous fluid is actively oil cooled through a labyrinth cooling channel.
Lubrication is through an electronically controlled variable displacement vane oil pump. The dry sump is scavenged by a four-stage pump that uses gerotors rather than gear pumps for improved mechanical refinement. The scavenge pump feeds an oil tank which has been specifically developed for the extreme G-loads that W1 can generate.
As a result the engine is capable of revving to 9,200 RPM – more than any previous road-legal McLaren – generating 928PS, a specific output of more than 233PS per litre. Total combustion output alone is an astonishing 103PS more than the McLaren Senna GTR, which is the most powerful application for the previous-generation M840T V8. A wide band of torque peaks at 900Nm as the power builds to a crescendo approaching the 9,200 RPM redline. Despite the higher output, the MPH-8 is also marginally lighter than the M840T series and 55mm shorter.
The exhaust manifold feeds large capacity twin-scroll turbochargers. The turbine and compressor have been optimised to deliver higher peak power and a significant increase in torque throughout the speed range compared to the M840T. Up to 30% greater torque is available giving instant response from as low as 2500rpm. The compressors feed the engine through charge coolers, with low-volume intake manifolds connected directly to the intake ports to maximise performance and transient response.
The exhaust features tubular manifolds that are engineered to maximise driver engagement as well as performance, with long, equal-length runners tuned to build sound to a crescendo as the engine speed approaches its 9,200rpm electronic rpm limit.